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Abstract. The small-size partially filled one-dimensional (1D) lattice gas system with 1/rδ repulsive in-
teractions is numerically studied. Our results indicate that phase change with vacancy ordering involved
exists in the partially filled 1D lattice gas systems, and the phase properties of the studied system strongly
depend on the occupancy nav and the interaction strength δ. Most interestingly, it is found that the phase
change still exists in the 1D finite-size lattice gas systems even with nearest neighbor interactions, i.e. δ
is infinite. These results provide valuable information about the phase properties of 1D confined systems,
such as molecules inside the carbon nanotubes, with long-range interactions between particles.

PACS. 64.60.Cn Order-disorder transformations; statistical mechanics of model systems –
05.10.-a Computational methods in statistical physics and nonlinear dynamics – 45.50.Jf Few- and
many-body systems

1 Introduction

In early years the phase properties of one-dimensional
(1D) systems were studied mostly by mathematical physi-
cists. These works up to 1965 were summarized by Lieb
and Mattis [1], and later reviewed by Griffiths on the stud-
ies of phase transitions in one-dimensional systems with
finite and infinite-range interactions [2]. It was generally
found that 1D systems with short-range interactions do
not exhibit phase transitions at finite temperature. For
example, Buar, Nosanow, and Araki predicted that the
lattice systems with finite-range interactions do not ex-
hibit phase transitions [3,4]. Ruelle found that the clas-
sical lattice gas with interactions that fall off faster than
r−2 do not exhibit first-order phase transitions, but that
higher-order transitions are possible [5]. Dyson has showed
that 1D Ising ferromagnets with interactions that decrease
as r−α will exhibit phase transitions when 1 < α < 2 [6].
The appearance of quasi-one-dimensional (Q1D) materials
provides the opportunity to test these 1D models. Recent
measurements on the Q1D sulfide KCu7−xS4 have shown
that phase transitions with drastic changes in the trans-
port and thermodynamic properties occur at low temper-
atures [7–9]. It was suggested that the phase transitions
found in KCu7−xS4 were due to vacancy ordering involv-
ing Cu+ ion diffusion along the zigzag chains. King et al.
introduced a Long Range Mean Field (LRMF) method to
study vacancy ordering in a one-dimensional chain with
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1/r Coulomb interactions [10–12]. These numerical cal-
culations gave a satisfactory explanation for the unusual
phase properties found in these Q1D materials and pro-
vided a possible method to examine the properties of par-
tially occupied 1D lattice gas system in detail.

Recently, nanotechnology including fabrication and
characterization of reduced dimension and small sized
structures have attracted tremendous attention. In par-
ticular, the discovery of a variety of nanotubes such as
carbon [13], BN [14,15], BC3and BC2N [16] makes a small-
size one-dimensional model system available. These nan-
otubes have long narrow cylindrical structure with closed
or open ends. Experimentally Smith et al. observed that
the C60 molecules can be contained within the carbon nan-
otubes [17]. Teizer et al. experimentally measured 4He des-
orption from single wall carbon nanotube bundles, and ap-
proximately described the adsorbate by one-dimensional
adsorption with a binding energy [18,19]. Kuznetsova and
Yates experimentally measured Xe adsorption on single
wall carbon nanotubes [20]. Calbi et al. summarized the
theory of the various phases predicted to occur when gases
are absorbed within the carbon-nanotube bundle [21].
Hodak and Girifalco further considered the clustering of
C60 molecules as a function of temperature for different
linear densities of the internal molecules [22]. They applied
the lattice gas model with nearest-neighbor attractive in-
teractions to describe the behavior of the C60 molecules
inside the carbon nanotubes, and used Monte Carlo sim-
ulations to study the C60 molecules in the carbon nan-
otubes with different diameters [22,23]. It was found that
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the C60 molecules form an almost perfect 1D solid at room
temperature and exhibit quasimelting when the temper-
ature is increased, and the small-diameter nanotubes can
be well described by a 1D model. The heat-capacity curve
of the larger diameter carbon nanotube has an extra peak,
which is due to the transformation of a zigzag structure
existing at low temperatures to a disordered one [23]. Xia
et al. theoretically studied hydrogen molecules confined
in single-walled carbon nanotubes with the many-body
Brenner potential and van der Waals intermolecular inter-
actions [24]. The Brenner potential only counts the near-
est neighbor pair interactions, which are dependent on the
distance between the two molecules [25]. Their results pre-
dicted that H2 molecules confined in carbon nanotubes
with high density could be condensed and exhibit a solid-
liquid phase transition.

Up to now, studies of molecules in the carbon nan-
otubes mostly focused on rare gases, hydrogen, and C60,
with which the interactions are treated as short-range in-
teractions. Based on the groundwork we previously de-
veloped on 1D systems with long-range interactions be-
tween particles [10–12], it is of physical interest to study
small-size one-dimensional lattice gas systems with vari-
ous interaction strengths. With the rapid development of
nanotechnology, we believe that the physical properties
of 1D confined systems with long-range interactions be-
tween particles will be experimentally measurable soon.
In this article, we exactly studied the phase properties of
a small-size partially filled 1D lattice gas system with 1/rδ

interactions up to the cluster size of 37 sites, where δ is
between zero (long range interaction) and infinity (nearest
neighbor interaction). Monte Carlo simulations were also
performed on the large-size (more than 12000 sites) lattice
gas systems to examine the possible finite size effect to our
model system. In addition, we numerically calculated the
thermodynamic average site particle numbers {〈ni〉} and
specific heat C of the model system. It is found that the
partially filled finite-size 1D lattice gas system could ex-
hibit a phase change between order and disorder states,
depending on the value of the interaction strength δ. It
has to be pointed out that the suggestive conclusions of
our results are based on studies of small-sized systems
with strong influence of the finite size effects. These find-
ings would not warrant the general statement on the ex-
istence of phase transformations in the thermodynamic
limit. However, we believe our results will provide valuable
information about the phase properties of 1D confined sys-
tems with long-range interactions between particles.

2 Hamiltonian

The Hamiltonian of a 1D lattice gas with 1/rδ interactions
is expressed by

H =
NS∑

i=1

∑

j>i

J

|i − j|δ ninj , (1)

where J is the coupling energy between two nearest neigh-
bor particles, ni (ni = 0 or 1) is the particle number at

site i, and NS is the number of total sites in the 1D lattice
gas system. We assume the lattice gas system has NP par-
ticles where NP < NS for a partially filled chain. In this
study, we focus on the order-disorder properties of particle
distributions as a function of temperature, while the order
parameters of the model system can be defined from the
average particle numbers which are given by 〈ni〉 at the
site i, and can be described as following

〈ni〉 =

∑
{nj} [ni exp(−H/kT )]

∑
{nj} [exp(−H/kT )]

, (2)

where k is the Boltzmann constant, and
∑

{nj} sums over
all configurations of the 1D lattice gas system. Since X-ray
diffraction patterns are determined by the average parti-
cle number distributions, the ensemble of 〈ni〉 is certainly
a reasonable set of order parameters. For convenience we
also adopt the order index q, which was defined in a pre-
vious article [10] and is expressed by

q =

∑
{i}(〈ni〉 − na)2

NP (1 − na)2 + (NS − NP )n2
a

, (3)

where
∑

{i} sums over all sites except the sites near the
two ends, and na = NP /NS is the average particle num-
ber for all the counted sites. Since we use open boundary
conditions in our calculations, the average site numbers of
the two end sites are always equal to 1 at any tempera-
ture. Thus we eliminate those sites near the two ends in
evaluating the order index q to avoid boundary effect. It is
easy to show that the values of q range from 0 to 1. When
q = 0, all the 〈ni〉 are equal to na, and the lattice gas sys-
tem is completely disordered. When q = 1, 〈ni〉 is equal to
either 0 or 1, and the system is completely ordered. The
energy of the 1D lattice gas system is expressed by

E =

∑
{nj} [H exp(−H/kT )]

∑
{nj} [exp(−H/kT )]

, (4)

where
∑

{nj} also sums over all configurations, and the
specific heat of the system can be calculated as C =
dE/dT .

3 Results and discussions

To compare with our previous mean-field and Monte Carlo
results [10,11], we first calculate the ground-state parti-
cle distribution of small-size 1D lattice gas systems with
1/r (δ = 1) Coulomb repulsive interactions. When T ap-
proaches absolute zero, the particle distribution will be
the average of the lowest potential configurations. It is
found that the ground states of the lattice gas systems
with an odd number of sites are different from those with
an even number of sites, which is reasonable due to the
symmetry properties. In Table 1, we tabulate the ground-
state average site numbers {〈ni〉} of the lattice gas systems
with 1/r repulsive interactions with both even (NS = 20,
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Table 1. The ground state configurations of the small size 1D lattice gas systems with 1/r Coulomb repulsive interactions with
various values of NS and NP .

NS , NP {〈ni〉}
NS = 20, NP = 10 {1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}
NS = 21, NP = 11 {1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}
NS = 21, NP = 12 {1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1}
NS = 21, NP = 13 {1, 1, 2/3, 1/3, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1/3, 2/3, 1, 1}

NP = 10) and odd (NS = 21, NP = 11, 12, and 13, respec-
tively) total lattice sites. It is seen that the ground-state
configuration for the even-site 1D lattice gas systems has
two possible configurations which are mirror symmetry
to each other, while the odd-site systems has an unique
ground-state configuration. Since the even-site systems
can be viewed as the combination of two odd-site sys-
tems, in this article we will focus our calculations on the
odd-site systems with particle number nearly half-filled.
As shown in Table 1, the ground-state particle distribu-
tions of the 1D lattice gas systems with 1/r interaction
have average particle numbers repeating themselves every
two sites except at the two ends, i.e., the period of {〈ni〉}
is 2. When temperature increases from absolute zero, the
particle distributions 〈ni〉 (except at the two ends) change
their values continuously from {〈ni〉} = {1, 0, 1, 0, ...} to
{〈ni〉} = {na, na, na, na, ...} at a phase change tempera-
ture tC (= kTC/J), i.e., the systems transform from the
completely ordered state to a disordered state with in-
creasing temperature. In Figure 1a, we show the results of
q versus t (t = kT/J) for some small-size 1D lattice gas
systems with 1/r repulsive interactions for various NS and
NP = NS+1

2 . At low temperatures, q = 1 and the lattice
gas systems are completely ordered with a two-site period,
as shown in Table 1. At high temperatures, q ≈ 0 and the
average site particle numbers are almost the same except
for the sites near the two ends, and the lattice gas systems
are disordered. Apparently, the phase property of this sys-
tem changes from the ordered state to the disordered state
at about tC with increasing temperature. It is also seen
that the phase change temperature tC decreases with in-
creasing cluster size. These observations are in excellent
agreement with our previous studies [10,11]. In Figure 1b,
we illustrate the temperature dependence of the order in-
dex for NP = NS+3

2 with δ = 1. An obvious difference
between the NP = NS+1

2 case (upper panel of Fig. 1) and
the NP = NS+3

2 case (lower panel of Fig. 1) is that the
latter shows a weaker dependence of tC on the cluster size.

The parameter δ in equation (1) could be viewed as
an index of the interaction strength. The interactions are
nearest-neighbor-like when δ is infinite, and the interac-
tions of all particle pairs are the same when δ is 0. Fig-
ures 2 and 3 show the results of q versus t for NS = 17,
NP = 10 (NP = NS+3

2 ) and NS = 17, NP = 9 (NP =
NS+1

2 ) with various δ’s. In these figures, the upper pan-
els show the results of δ ≤ 1, and the lower panels show
the results of δ ≥ 1. As shown in Figure 2 and Figure 3,
there is no phase change when δ � 0.1 or δ � 8 for the
NP = NS+3

2 system, while the phase change is absent
only if δ � 0.6 for the NP = NS+1

2 system. That is, the
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Fig. 1. The order indexes q versus temperature t of the small
size 1D lattice gas systems with 1/r Coulomb repulsive inter-
actions. The upper panel shows the results of systems with
NP = NS+1

2
, and the lower panel shows the results of systems

with NP = NS+3
2

.

NP = NS+1
2 systems will exhibit a phase change even

with nearest neighbor interactions (δ = ∞), while the
NP = NS+3

2 systems show no phase change with nearest
neighbor interactions. It is quite surprising that adding
one particle to the NP = NS+1

2 systems would cause such
a drastic difference in the phase properties. In order to
resolve the subtleties between the two systems, we ex-
amined the ground-state particle distribution for systems
with the same NS but various NP ’s with nearest neighbor
interactions. It is found that the NP = NS+1

2 systems with
nearest neighbor interactions have an unique ground-state
configuration, while the NP > NS+1

2 systems have many
possible ground-state configurations. In the following we
thus classify the lattice gas systems into two kinds: the
special system, with NP = NS+1

2 ; and the general system,
with NP > NS+1

2 for descriptive convenience.
Figure 4 shows the results of q versus t for the spe-

cial system with nearest neighbor interactions for lattice
sites up to NS = 37, the largest size feasible in this study
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Fig. 2. The order indexes q versus temperature t of the general
1D lattice gas systems with various δ’s with NS = 17, NP = 10.
The upper panel shows the results of δ ≤ 1, and lower panel
shows the results of δ ≥ 1. The systems exhibit phase transition
with 0.1 < δ ≤ 8. Note that the plots for δ = 0.1 in (a) and
δ = 8.0 and infinity in (b) are nearly coincident with the axes.
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Fig. 3. The order indexes q versus temperature t of the special
1D lattice gas systems with various δ’s with NS = 17 and
NP = 9. The upper panel shows the results of δ ≤ 1, and the
lower panel shows the results of δ ≥ 1. The system will exhibit
phase transition as long as δ > 0.6.
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Fig. 4. The order indexes q versus temperature t of the 1D
special systems (NP = NS+1

2
) with nearest neighbor interac-

tions (δ = ∞ ) and various size numbers NS . All systems with
various site numbers exhibit a second order phase transition,
however, the transition temperature shifts toward lower tem-
perature with increasing NS .

due to computer capability. A clear trend seen in this fig-
ure is that the phase change temperature shifts toward
lower temperature with increasing NS , similar to that of
the 1/r interactions shown in Figure 1a. According to
these results, one might suspect that the infinite-site sys-
tem would exhibit no such order-disorder phase change.
In order to elucidate the possible size effect to our model
system, we thus studied large-size systems up to more
than 12000 sites by using the Monte Carlo method intro-
duced in reference [11]. In Figure 5, we show the results
of Monte Carlo simulation on t-dependent order index q
for the large-size special system with nearest neighbor in-
teractions. It is seen that a phase change at about t ≈ 0.1
was also observed with Monte Carlo simulations, consis-
tent with the exact calculations. It is worth mentioning
that the results of the lattice site NS = 25 are almost
identical as shown in Figure 4 (analytical method) and
Figure 5 (Monte Carlo method), a confirmation of the va-
lidity of the Monte Carlo results. Near the onset of the
phase change, the results depend on the size of lattice
gas system, as the curves around the phase change are
smoother with smaller site number. Such a rounding effect
on small-size systems is presumably due to the end effect
(or size effect), since this feature is consistently seen in all
small-size exact calculations. With increasing site num-
ber, while a weaker end effect is expected to the model
system, the phase change becomes sharper and the phase
change temperature tC shifts toward lower temperature.
If we define the tC of each site number to be the inter-
section point of the given q− t curve and a horizontal
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Fig. 5. The Monte Carlo results of order indexes q versus
temperature t of large-size special 1D lattice gas systems with
nearest neighbor interactions.

straight line at q = 0.5, then a disappearing tC at a site
number of approximately 500 can be determined in the
small-size region (25–193). Nevertheless, this scaling pic-
ture totally fails in the large-size regions (385–12289), as
the tC gradually approaches to t = 0.09. It has to be no-
ticed here that the algorithm for carrying out a Monte
Carlo simulation is to perform a random walk through
configuration space in which the relative frequency of vis-
itations generate the equilibrium ensemble distribution.
As a result, Monte Carlo calculations always involve finite
errors and fluctuations. These fluctuations play an impor-
tant role near the tC , especially in 1D systems where it is
well-known that thermal fluctuations would significantly
depress the tC . In order to resolve this deficiency, we make
a simple estimation on how thermal fluctuations would af-
fect the tC of our model system. At the temperature lower
than tC , the particle number distribution of the special
system can be approximately represented by alternating
0 and 1, i.e. {〈ni〉} = {1, 0, 1, 0, ..., 1, 0, 1}, as shown in
Table 1. Due to the existence of thermal fluctuations, the
probability p of any particle jumping to its two adjacent
sites to form a nearest-neighbor pair can be described by
the classical Boltzmann expression p = 2 exp(−1/tC). In
other words, the total number of nearest-neighbor pairs
could be found under the influence of thermal fluctua-
tions is 2NP exp(−1/tC). Apparently, the formation of
such kind of neighboring pairs would destroy the long
range order of the 1D chain, thus the order-disorder phase
change no longer occurs. According to our results shown
in Figure 5, the largest considered system is NS = 12289
(NS = 6145) with tC ∼ 0.09, so the number of the possible
nearest-neighbor pairs is about 0.18. It is trivial to show

that the numbers of the two or more nearest-neighbor
pairs found in our model system is even less than that
of the a single nearest-neighbor pair. From this simple
estimation, we could safely conclude that thermal fluctu-
ations do not strongly affect the phase properties in our
considered cases. Therefore, we argue that the rounding
effect and the depression of tC in the small-size region
are a consequence of the size effect. Consequently, the end
effect plays an essential role of the phase properties in
our model system, and our results are only applicable to
the mesoscopic systems. Certainly it is expected that such
an order-disorder phase change would vanish in the ther-
modynamic limit, since there will be no telling difference
between the special system and general system as the size
of the 1D lattice gas system goes to infinite. Besides, ther-
mal fluctuations would also destroy the long range order
as the size of the 1D chain becomes sufficiently large.

At this point, we would like to point out that the exis-
tence of phase changes is possible in the finite lattice gas
system, at least for the system size less than 12000 sites.
On the other hand, experimentally the length of the sin-
gle walled carbon nanotubes is found to be on the or-
der of several hundred nanometers [20], i.e., the number
of molecules inside a nanotube is not more than 5000.
Therefore, our results of Monte Carlo simulations could
qualitatively describe the phase properties of all available
1D confined systems with nearest neighbor interactions.
In addition, it is worth mentioning that the 1D lattice
gas could be mapped into the 1D Ising system, and that
the 1D Ising system is known to have no phase transi-
tion at finite temperatures. However, the special system
with nearest neighbor interactions was found to have an
unique ground state, while the Ising model has two possi-
ble ground states (all particles with spin up or spin down).
We believe that it is this difference which makes our model
system sustain phase change at finite temperatures.

Figures 6 and 7 show C versus t for the general and
special systems with various δ’s. As illustrated in Fig-
ure 6, the specific heat for δ = 1 has a peak at about
t = 0.08, which corresponds to the order-disorder phase
change shown in Figure 2. It is seen in the upper (lower)
panel of Figure 6 that the phase change temperature shifts
toward lower temperature with decreasing (increasing) δ
as δ < 1 (δ > 1), consistent with the results of Figure 2. It
is noted that the specific-heat peaks appear to be sharper
for larger δ (lower panel of Fig. 6), and the appearance
of broad maximums at high temperatures in these cases
is not a consequence of phase changes but the heat ca-
pacity background. For the special system, specific-heat
peaks corresponding to the order-disorder phase change
are also observed for δ > 0.6 (see Fig. 7), and the peak
positions shift toward higher temperature with increasing
δ. These observations are in good agreement with that of
the results shown in Figure 3. It should be mentioned that
the broad maximums appearing at high temperatures for
small δ (δ ≤ 0.8) is again due to background contributions.

In fact, both the case (1) of the molecules in the closed
nanotubes and case (2) of the ions in the one-dimensional
chains for the Q1D materials in which the particles are
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Fig. 6. The specific heats versus temperature t for the general
systems. The upper panel shows the results of δ ≤ 1, and lower
panel shows the results of δ ≥ 1. The peaks in specific heat
correspond to the phase transitions shown in Figure 2.

free to move in a periodic potential caused by the interac-
tions between particles, can be simplified as partially filled
lattice gas systems. Normally, 1D systems with short-
range interactions do not exhibit phase transitions. How-
ever, in the present study we strikingly found that small-
size 1D lattice gas systems with NP = NS+1

2 (namely
the special systems) exhibit a order-disorder phase change
even with nearest neighbor interactions (δ = ∞). With the
preliminary success in explaining the phase transitions in
the KCu7−xS4 system with our mean-field model [10–12],
we expect that such kinds of phase changes in mesoscopic
systems such as molecules in the long narrow nanotubes
may be experimentally observable in the not too distant
future. At this point, it would be instructive to compare
our results with other works on 1D nanotube systems.
In reference [22], Hodak and Girifalco considered the 1D
nanotube system as a 1D lattice gas model with nearest-
neighbor attractive interactions [22]. They obtained the
probability of occurrence of a single cluster, which can be
regarded as an order parameter, as a function of temper-
ature plotted in Figure 3, and the heat capacity versus
temperature of the studied systems plotted in Figure 6.
We notice that our results of the order index q and specific
heats C with respect to t are very similar to those shown
in their Figures 3 and 6 of reference [22]. We argue that
such a result suggests that the 1D lattice gas systems with
repulsive interactions versus those with attractive interac-
tions is analogous to the antiferromagnetic systems versus
the ferromagnetic systems. On the other hand, the results
of the special system with large δ in the present study can

Temperature kT/J

0.0 0.1 0.2 0.3 0.4
S

pe
ci

fic
 H

ea
t J

/(
kT

/J
)

0

2

4

6

8

δ =infinity

δ =1.0

δ =4.0

δ =2.0

δ =0.9

δ =0.65

δ =0.8
δ =0.7

Fig. 7. The specific heats of the special systems. The peaks
in specific heat correspond to the phase transitions shown in
Figure 3.

be considered as a simplification for Xia’s system in ex-
tremely narrow carbon nanotubes with high density [24].
The pair ven der Waals interactions between all molecules
in Xia’s system with high density can be regarded as the
special system in our model with δ = 12, plus a nearest
neighbor term. Each molecule in Xia’s system will be in
a fixed position when t is near 0, i.e., there is only one
ground state, and the system undergoes an order-disorder
phase change. This finding is in accord with our results
for the special systems.

4 Summary

In this paper, we exactly studied the phase properties of
small-size partially filled one-dimensional lattice gas sys-
tem with 1/rδ repulsive interactions. The results show
that such systems exhibit an order-disorder phase change
in a certain range of δ, depending on the filling parame-
ter na = NP /NS. These results are qualitatively consis-
tent with our previous LRMF results with δ = 1 [10].
It is found that the systems for NP > NS+1

2 (general
system) have many possible ground-state configurations
with nearest neighbor interactions, while the systems for
NP = NS+1

2 (special system) have an unique ground state.
The general system with pair interaction proportional to
1/rδ will exhibit a phase change if and only if 0.1 < δ ≤
8, while the special system will exhibit phase change as
long as δ > 0.6. The largest size system which was exactly
performed in this study is NS = 37, due to the computer
capability. A complementary calculation using the Monte
Carlo method up to lattice site more than NS = 12000
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on the special system with nearest neighbor interactions
was also performed. Even though the phase change is still
found in the 1D lattice gas systems even with nearest
neighbor interactions, it has to be pointed out that the end
effect plays an essential role in the phase properties of our
model system. Nevertheless, our present study provides an
extensive phase diagram for the 1D finite-size lattice gas
system with the full range of interactions between parti-
cles. These results would yield valuable information of the
phase properties for 1D confined systems. We expect such
behaviors may be experimentally observable soon.
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